

Form:	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
Course Synabus	Issue Number and Date	05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Group theory
2.	Course Number	0302955
2	Credit Hours (Theory, Practical)	3
5.	Contact Hours (Theory, Practical)	0
4.	Prerequisites/ Corequisites	-
5.	Program Title	PhD
6.	Program Code	021
7.	School/ Center	Faculty of Science
8.	Department	Physics
9.	Course Level	Graduate
10.	Year of Study and Semester (s)	
11	Other Department(s) Involved in	
11.	Teaching the Course	
12.	Main Learning Language	English
13.	Learning Types	\Box Face to face learning \Box Blended \Box Fully online
14.	Online Platforms(s)	□ Moodle □ Microsoft Teams
15.	Issuing Date	
16.	Revision Date	

17. Course Coordinator:

Name:	Contact hours:
Office number:	Phone number:
Email:	

18. Other Instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19. Course Description:

As stated in the approved study plan.

- **20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
 - 1. **SO1:** to be able to demonstrate an advanced and comprehensive understanding of core physics concepts and specialized knowledge in a chosen field of research, contributing to the frontier of physics.
 - 2. **SO2:** to be able to develop and execute independent, original research projects that address complex scientific problems, advancing theoretical and experimental physics.
 - 3. **SO3:** to be able to apply advanced mathematical and computational techniques to analyze complex physical phenomena and critically evaluate scientific literature and experimental results.
 - 4. **SO4:** to be able to effectively communicate complex physics concepts, research findings, and their significance through academic writing, presentations, and public outreach.
 - 5. **SO5:** to be able to adhere to high ethical standards and professional responsibility in conducting research, including data integrity, ethical treatment of subjects, and the responsible use of resources.
 - 6. **SO6:** to be able to demonstrate leadership and collaborative skills within multidisciplinary teams, contributing to the development of new scientific knowledge and promoting knowledge-sharing across disciplines.
 - 7. **SO7:** to be able to cultivate the ability to adapt to new scientific advancements and continuously engage in professional development to contribute to innovation in the field of physics.

8. SO8: to be able to master experimental and computational techniques relevant to the research field, demonstrating competency in operating and developing specialized physics instrumentation and software

- **21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)
 - 1. Explain the fundamental principles of group theory, including the definitions of groups, subgroups, cosets, and classes.
 - 2. Identify and classify finite and continuous groups relevant to physical systems.
 - 3. Derive the key properties of matrix representations, including reducibility and irreducibility.
 - 4. Explain the orthogonality theorems and their significance in group theory.
 - 5. Analyze the role of symmetry in quantum mechanics, solid-state physics, and crystallography.
 - 6. Apply group theory to solve problems involving quantum mechanical operators, angular momentum, and symmetry-adapted wavefunctions.
 - 7. Derive selection rules for physical processes, such as spectroscopy transitions, using group theoretical methods.
 - 8. Use irreducible representations to analyze the vibrational and rotational spectra of molecules.
 - 9. Analyze crystal structures and electronic band structures using group theory
 - 10. Use group theoretical techniques to simplify the analysis of complex quantum systems.

Course ILOs	The learning levels to be achieved									
	Remembering	Understanding	Applying	Analysing	evaluating	Creating				
1		X								
2		X								
3	X	Х								
4	X	X								
5	Х	Х								
6			Х	Х						
7			Х	Х						
8			Х	Х						
9			Х	х						
10					Х	Х				

2^γ. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)	ILO(6)	ILO(7)	ILO(8)
ILOs								
Course								
/ ILOs								
1	Х						Х	
2	Х		Х				Х	
3			Х					
4			х					
5				Х				
6	Х	Х					Х	
7		Х				Х		
8			х					Х
9	Х				х	х		
10		Х		х				Х

2^r. Topic Outline and Schedule:

Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
1	1.	Introduction to Group Theory	CILO 1, CILO 2	Face-to- Face	Classro om	Synchron ous		Hamermesh (Ch. 1)
	2	Definitions of Groups, Subgroups, and Classes	CILO 1	Face-to- Face	Classro om	Synchron ous		Hamermesh (Ch. 1)

الجامعة الاردنية

2	1	Cosets and Lagrange's Theorem	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
2	-		1	Face	om	ous	2)
	2	Classes and Conjugacy	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			2	Face	om	ous	2)
3	1	Finite and Continuous Groups	CILO	Blended	LMS	Synchron	Hamermesh (Ch.
			2		(e.g.,	ous	3)
					Moodle		
)		
	2	Matrix Representations of Groups	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
	1		3	Face	om	ous	4)
4	1	Reducibility and Irreducibility	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			3, CU O	Face	om	ous	4)
	2	Orthogonality Theorems and		Face to	Classro	Synchron	Hamermash (Ch
	2	Character Tables		Face	om	ous	5)
5	1	Symmetry in Quantum Mechanics		Face-to-	Classro	Synchron	Hamermesh (Ch
ر _ا	1	Symmetry in Quantum Meenanies	5	Face	om	OUS	6)
	2	Symmetry-Adapted Wavefunctions	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
	_		6	Face	om	ous	6)
6	1	Applications to Angular Momentum	CILO	Blended	LMS	Synchron	Hamermesh (Ch.
Ũ			6			ous	7)
	2	Selection Rules for Spectroscopy	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			7	Face	om	ous	7)
7	1	Vibrational Spectroscopy	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			8	Face	om	ous	8)
	2	Rotational Spectroscopy	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			8	Face	om	ous	8)
8	1	Midterm					
	2	Symmetry in Crystals	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			9	Face	om	ous	9)
9	1	Electronic Band Structures	CILO	Blended	LMS	Asynchro	Hamermesh (Ch.
			9			nous	10)
	2	Simplifying Quantum Systems with	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
	1	Group Theory	10 CU 0	Face	om	ous	
10	1	Advanced Applications in Molecular	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
		Symmetry	э, СП О	Face	om	ous	12)
	2	Advanced Crystallography		Blended	IMS	Synchron	Hamermesh (Ch
	2	Advanced crystanography	9	Dicilaca	LIVIS		13)
11	1	Introduction to Lie Groups	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
**	[_		2	Face	om	ous	14)
	2	Continuous Symmetry Applications	CILO	Blended	LMS	Asynchro	Hamermesh (Ch.
			2,			nous	15)
			CILO				
	1		5				
12	1	Lie Algebras and Their	CILO	Face-to-	Classro	Synchron	Supplementary
		Representations	3	Face	om	ous	materials
	2	Applications to Particle Physics	CILO	Face-to-	Classro	Synchron	Hamermesh (Ch.
			6,	Face	om	ous	16)

الجامعة الاردنية

			CILO 7				
13	1	Research Topics in Group Theory	CILO 10	Blended	LMS	Synchron ous	Supplementary materials
	2	Project Work and Presentation	All relev ant CILO s	Face-to- Face	Classro om	Synchron ous	All learning resources
14	1	Review	All CILO s cover ed	Face-to- Face	Classro om	Synchron ous	All learning resources
	2	Final Exam	All CILO s cover ed	Face-to- Face	Classro om	Synchron ous	

24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm	30	CH1-CH7	1-8	8 th week	Face
Project	30	All	All	13 th week	Face
Final	40	All	All	Final week	Face

2°. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

27. Course Policies:

- A- Attendance policies:
- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:
- E- Grading policy:
- F- Available university services that support achievement in the course:

2^v. References:

A- Required book(s), assigned reading and audio-visuals:

"Group Theory and Its Application to Physical Problems" by Morton Hamermesh

B- Recommended books, materials, and media:

• "Mathematical Methods for Physicists" by George B. Arfken and Hans J. Weber

• "Group Theory: A Physicist's Survey" by Pierre Ramond

2^A. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Name of the Head of Quality Assurance Committee/ Department	Signature:	Date:
Name of the Head of Department	Signature:	Date:
Name of the Head of Quality Assurance Committee/ School or Center	Signature:	Date:
Name of the Dean or the Director	Signature:	Date:
••••••	•••••	•••••